3CV3240 - Turboréacteurs

Responsables: Ronan VICQUELIN, Yoann MERY

Langues d'enseignement : FRANCAIS

Campus où le cours est proposé : CAMPUS DE PARIS - SACLAY

Nombre d'heures d'études élèves (HEE) : 30

Nombre d'heures présentielles d'enseignement (HPE) : 18

Année académique : 2024-2025

Niveau avancé: non

Présentation, objectifs généraux du cours :

Ce cours a pour objectif de donner les bases pour comprendre les notions fondamentales nécessaires au design des turboréacteurs modernes. Il sera découpé en trois types de contenu :

- Des sessions apportant les bases théoriques pour la modélisation des turboréacteurs et turbomachines en général,
- Des sessions pratiques (TD) pour les appliquer,
- Des sessions décrivant le métier de concepteur aéronautique, dans lesquelles on présentera notamment les enjeux et les trade-off qui doivent être réalisés.

Les applications pratiques seront réalisées en partie en séance, avec Excel (ou Python). Elles seront terminées à la maison et constitueront la base de la notation.

Période(s) du cours (n° de séquence ou hors séquence) :

SM11

Prérequis:

aucun

Plan détaillé du cours (contenu) :

- Séance 1 : Introduction et principes fondamentaux
 - o Notions énergétiques sur le vol, ordres de grandeur
 - Principes du turboréacteur
 - La propulsion, la poussée et le bilan de quantité de mouvement
 - Pourquoi comprimer et divergence des isobares
- Séance 2 : Calcul d'un cycle de turboréacteur simple corps simple flux design :
 - Analyse dimensionnelle d'une turbomachine
 - Définition des plans moteurs et des variables
 - Les principes et les équations (diagramme H-S, notions de rendement, composant par composant)
 - TD Excel (à partir de la géométrie, à partir de la spécification)
 - Construction d'un cycle moteur, optimisation du cycle pour une application spécifique
 - Travail à la maison pour élément de notation

- Séance 3 : Architecture des turboréacteurs
 - Les enjeux
 - · Les trade-offs : consommation, pollution, opérabilité, durée de vie
 - Différentes architectures pour différentes applications
- Séance 4 : Calcul d'un cycle de turboréacteur double corps double flux
 - Les principes et les équations
 - Définition des plans moteurs et des variables
 - TD Excel:
 - Construction d'un cycle moteur double corps double flux, optimisation du cycle pour une application spécifique
 - Travail à la maison pour élément de notation
- Séance 5 : Physique des composants tournants
 - Analyse dimensionnelle
 - Equation d'Euler pour les machines tournantes
 - Champ compresseur, champ turbine
 - TD Excel:
 - Construction d'un champ compresseur simplifié, introduction du champ dans le modèle performance, étude de points hors adaptation
 - Travail à la maison pour élément de notation
- Séance 6 : Sur le site de Safran Villaroche (si organisation possible)
 - Présentation du paysage industriel
 - o Organisation du groupe Safran et lien avec les métiers présentés dans le cours
 - Design des turboréacteurs en pratique exemple : la chambre de combustion
 - Cycle en V, Simulations 1D à 3D, Validation par essais
 - Visite du musée
 - Quelques éléments de l'histoire de l'aéronautique
 - Présentation des technologies sur un moteur réel en coupe

Organisation de l'évaluation :

Travail personnel à rendre

Acquis d'apprentissage visés dans le cours :

A la fin de cet enseignement, l'élève sera capable de :

- Construire un modèle performances simplifié, représentatif des technologies actuelles
- Décrire les trade-off qui interviennent dans le design des turboréacteurs
- Construire un champ compresseur simple et interpréter les caractéristiques d'un vrai champ (pi/débit/rendement)
- Comprendre les différentes étapes de la conception d'un turboréacteur et comment l'entreprise s'est organisée pour les réaliser et les piloter